blockify
Release 0.2.2

Arnav Moudgil

Sep 22, 2020

10

11

12

13

14

Introduction
Installation

Tutorial

Tips and Tricks

blockify

Command: segment
Command: call
Command: normalize
Command: downsample
API: segmentation

API: annotation (peak calling)
API: normalization
API: downsampling

Indices and tables

Bibliography

Python Module Index

Index

CONTENTS

11
13
15
17
19
21
23
27
29
31
33
35

37

blockify, Release 0.2.2

Blockify is a command line program and Python library for genome segmentation and peak calling using Bayesian
blocks.

CONTENTS 1

https://pypi.python.org/pypi/blockify
https://pypi.python.org/pypi/blockify/
https://travis-ci.org/arnavm/blockify
http://blockify.readthedocs.io/en/latest/?badge=latest

blockify, Release 0.2.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

blockify is a fast and optimal genomic peak caller for one-dimensional data (e.g. BED, qBED, CCF).

The package is built around the Bayesian blocks algorithm [SNJC13], which finds the optimal change points in time
series data assuming a Poisson counting process. We also implement a dynamic pruning strategy which achieves linear
runtime performance [KFE12]. An interactive notebook demonstrating Bayesian blocks can be found here.

While Bayesian blocks was originally developed in the astrophysics community for photon-counting experiments, we
find that it has applications in genomics. In particular, we use it to analyze transposon calling cards experiments.
Calling cards uses a transposase fused to a transcription factor (TF) to deposit transposons near TF binding sites.
Bayesian blocks partitions the genome based on the local density of insertions, which in turn are used to identify
peaks and candidate TF binding sites. We have also had success using this algorithm to perfom general-purpose
genome segmentation.

Note: Recent papers using calling cards include [SLC+19] and [LSM20]. For examples of Bayesian blocks in
practice, see [CMC+20] and [MWC+20].

blockify is best designed to process qBED files [MLH+20], although it will work with BED files.

To get started, please see our Installation guide and Tutorial.

1.1 References

https://observablehq.com/d/d2cafaa7d8c1e018

blockify, Release 0.2.2

4 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION

blockify runs on Python (>= 3.4) and is installable via pip

’pip install blockify

2.1 Development

To actively develop blockify, clone from GitHub and switch to the development branch:

git clone https://github.com/arnavm/blockify.git
cd blockify
git checkout dev

Unit tests are available from the top-level directory:

python -m unittest tests.test_basic

Two batteries of tests are provided: tests.test_basic and tests.test_advanced. For routine develop-
ment, the basic set of tests should be sufficient. The advanced suite takes much more time and fetches several large
datasets. It is best used when making major changes to the code.

2.2 Disclaimer

Not to be confused with the similarly-named Spotify plugin.

https://github.com/serialoverflow/blockify

blockify, Release 0.2.2

6 Chapter 2. Installation

CHAPTER
THREE

TUTORIAL

This tutorial illustrates basic blockify usage. We will analyze some previously published data [MWC+20]. Specif-
ically, we will segment bulk SP1-piggyBac calling cards data and call SP1-directed peaks. We will also segment
wild-type piggyBac calling cards data and call BRD4-directed peaks.

3.1 Getting Started

We need to download and decompress the processed data files, as well as a reference set of TTAA tetramers.

> wget -0 HCT-116_PBase.ccf.gz "https://www.ncbi.nlm.nih.gov/geo/download/?
—acc=GSM4471636&format=file&file=GSM4471636%5FHCT%$2D116%5FPRBase%2Eccf%2Etxt%$2Egz"
> gunzip HCT-116_PBase.ccf.gz

> wget -O HCT-116_SPl-PBase.ccf.gz "https://www.ncbi.nlm.nih.gov/geo/download/?
—acc=GSM4471637&format=file&file=GSM4471637%5FHCT%$2D116%5FSP1%2DPBase%2Eccf%$2Etxt
%2Egz"

> gunzip HCT-116_SP1l-PBase.ccf.gz

> wget https://gitlab.com/arnavm/calling_cards/-/raw/master/Ref/TTAA/hg38_TTAA.bed.xz
> xz —d hg38_TTAA.bed.xz

> 1s

HCT-116_PBase.ccft

HCT-116_SP1-PBase.ccf

hg38_TTAA.bed

Here, HCT-116_SP1-PBase.ccf are the insertions from the SP1-directed experiment, HCT-116_PBase.ccf are the in-
sertions from the wild-type transposase, and hg38_TTAA. bed are the set of potential piggyBac insertion sites.

3.2 Calling SP1 Peaks

We first segment the experiment file as this gives us a candidate set of regions with piecewise-constant densities. These
contiguous, bookended intervals are known as blocks.

> blockify segment -i HCT-116_SP1l-PBase.ccf -o HCT-116_SPl-PBase.blocks
> wc -1 HCT-116_SPl-PBase.blocks

21375

> head —n 3 HCT-116_SPl-PBase.blocks

chrl 54672 758707

chrl 758707 906326

chrl 906326 906925

blockify, Release 0.2.2

We now use this set of blocks along with the insertions themselves to call peaks. Since the blocks have piecewise-
constant density, we model the number of insertions in each block as a Poisson process. For each block, we parame-
terize the background Poisson process using the control, undirected insertions, scaled for library size. A set of peaks
might be called like this:

> blockify call —-i HCT-116_SP1-PBase.ccf —-r HCT-116_SPl1-PBase.blocks —-bg HCT-116_
—PBase.ccf -a 0.05 —--correction fdr_bh -d 250 -t -o HCT-116_SP1-PBase_peaks.bed
> wc -1 HCT-116_SP1-PBase_peaks.bed

8356

Here, we specified the input file with -1, the input regions with —r, and the background data with ~bg. We used
Benjamini-Hochberg correction at a false-discovery rate of 5% (-a 0.05 —-correction fdr_bh), merging
significant blocks within 250 bp of each other (-d 250), and tightening the final peaks (-t) to improve peak resolu-
tion. For a full list of options, see Command: call.

3.3 Calling BRD4 Peaks

To identify BRD4-bound peaks from undirected insertions, we follow a similar set of commands for calling TF-
directed peaks. There are two key differences: first, we use hg38_TTAA bed as the background file, as our null model
assumes insertions would be uniformly distributed across the genome; and second, we set the pseudocount to 0 (-c
0). When calling TF-directed peaks, both the input and background sets of insertions are random variables. Thus,
in any given block, it is possible that there are zero insertions in the background file. To account for undersampling,
we added a pseudocount (default: 1). This is not necessary when calling BRD4 peaks because there will always
be a TTAA in each block, as piggyBac virtually always inserts into this motif. Retaining a pseudocount, while not
technically wrong, will decrease sensitivity.

> blockify call —-i HCT-116_PBase.ccf -r HCT-116_PBase.blocks -bg hg38_TTAA.bed -c 0 -
—p le-30 -d 12500 -o HCT-116_PBase_peaks.bed

> wc -1 HCT-116_PBase_peaks.bed

1935

Here, we’ve optimized peak calling to detect BRD4-bound super-enhancers. We’ve set a very strict threshold, using
an unadjusted p-value cutoff of 1e-30 (-p 1e-30) and merging significant blocks within 12,500 bp (-d 12500).

8 Chapter 3. Tutorial

CHAPTER
FOUR

TIPS AND TRICKS

Here are some helpful tips and tricks to get the most out of blockify.

4.1 Resolution

Transposition data can be sparse, particularly if the transposase is constricted to specific motifs (e.g. piggyBac). Sparse
data lead to broader peaks, which can be harder to interpret. Here are some strategies to increase resolution:

* Omit or decrease the —d/——-distance flag to minimize merging of significant blocks
* Specify -t /-—tight, which will pull in peak boundaries so they overlap gBED entries
* For the sharpest intervals, use the —s/—-summit flag to return each peak’s maximum

* Finally, increasing the value of ——p0 (default: 0.05) can lead to more peaks being called, at the risk of returning
more false positives.

4.2 Miscellaneous

* Although the 7utorial demonstrated first generating a list of blocks for input into blockify call, this step
is not strictly necessary. If a regions file is not supplied, blockify will generate one behind the scenes using
the default settings in blockify segment. However, this can result in considerable memory usage. Pre-
computing the blocks file is one way to minimize memory consumption and improve performance.

 Similarly, the regions over which to run blockify call need not be Bayesian blocks. The program can
operate on any set of intervals provided in BED format. This flexibility can be useful if there are a set of
features that are biologically meaningful to your analysis. For example, this could be a file of promoter regions
or accessible loci where a TF might be bound.

* Peaks are output in BED6 format with a generic annotation, like peak_1743. The program does not re-
calculate post hoc p-values on peaks. If you want to further calculate the significance or normalized density of
these peaks, simply re-run blockify call with the ——intermediate flag set and supply the peaks file
to -r/—-regions. Then inspect the intermediate file for these details. Picking up with the BRD4 example
from the Turorial:

> blockify call -i HCT-116_PBase.ccf -r HCT-116_PBase_peaks.bed -bg hg38_TTAA.bed -c_
—~0 -p 1le-30 -d 12500 --intermediate HCT-116_PBase_peaks_annotated.csv > /dev/null

> head -n 2 HCT-116_PBase_peaks_annotated.csv

,chrom, start, end, name, score, strand, Input, Background, Normed_bg,Net_density,pValue,
—negloglOpValue, rejected
0,chrl,7298597,7304456,peak_0,1,.,130.0,32,2.533130940448789,0.021755738020063357,3.
—74243334103237e-169,168.42684592642368, True

blockify, Release 0.2.2

10 Chapter 4. Tips and Tricks

CHAPTER
FIVE

Genomic peak caller for one-dimensional data

BLOCKIFY

’usage: blockify [-h] [-Vv] {segment,normalize,call,downsample}

5.1 Positional Arguments

command Possible choices: segment, normalize, call, downsample

Subcommands

5.2 Named Arguments

-v, --version show program’s version number and exit

11

blockify, Release 0.2.2

12 Chapter 5. blockify

CHAPTER
SIX

COMMAND: SEGMENT

Segment a BED/qBED file using Bayesian blocks

usage: blockify segment [-h] -1 INPUT [--prior PRIOR | --p0O PO]

[-—method {OP,PELT}]
output

6.1 Named Arguments

-i, --input
output
--prior

--p()

--method

Input file
Output file (BED format); default: stdout
Explicit prior on the number of blocks (not recommended for general use)

Empirical prior based on a specified false-positive rate; must be between 0 and 1
(default: 0.05)

Possible choices: OP, PELT

Segment using the optimal partitioning (OP) or pruned exact linear time (PELT)
algorithm (default: “PELT”)

13

blockify, Release 0.2.2

14 Chapter 6. Command: segment

CHAPTER
SEVEN

Call peaks in a qBED file

COMMAND: CALL

usage:

blockify call

-h] —-i INPUT [--prior PRIOR | —-p0O PO]
—--method {OP,PELT}] [-r REGIONS] -bg BACKGROUND

[
[
[-—intermediate INTERMEDIATE]
(
[
[

—a ALPHA | -p PVALUECUTOFF) [--correction CORRECTION]

—d DISTANCE] [--min MIN] [--max MAX] [-t | -s]

—c PSEUDOCOUNT] [--measure {enrichment,depletion}]
output

7.1

Named Arguments

-i, --input
output
--prior

“po

--method

-1, --regions

-bg, --background
--intermediate

-a, --alpha

-p, --p ValueCutoff

--correction

-d, --distance

--min

=-max

Input file
Output file (BED format); default: stdout
Explicit prior on the number of blocks (not recommended for general use)

Empirical prior based on a specified false-positive rate; must be between 0 and 1
(default: 0.05)

Possible choices: OP, PELT

Segment using the optimal partitioning (OP) or pruned exact linear time (PELT)
algorithm (default: “PELT"”)

Regions over which to normalize event counts; should be supplied as a BED file.
If not provided, the input file will be segmented using Bayesian blocks.

Background gqBED file
Intermediate file to write verbose output (CSV format)
Alpha for multiple hypothesis correction (must be between 0 and 1)

p-value cutoff (NOTE: This is a straight cutoff and will not take into account
multiple hypothesis correction!)

If alpha provided, need to specificity method of multiple hypothesis correction.
See statsmodels.stats.multitest for a complete list of choices (default: “bonfer-
roni”)

Merge features closer than this distance (bp)
Report peaks larger than this cutoff (bp)

Report peaks smaller than this cutoff (bp)

15

blockify, Release 0.2.2

-t, --tight Shrink peak boundaries to overlap data points
-s, --summit Return peak summits

-c, --pseudocount Pseudocount for background regions (default: 1)
--measure Possible choices: enrichment, depletion

Perform a one-tailed test for either enrichment or depletion relative to the back-
ground file (default: “enrichment”)

16 Chapter 7. Command: call

CHAPTER
EIGHT

COMMAND: NORMALIZE

Calculate normalized rates of events in a gBED file

usage: blockify normalize [-h] —-i INPUT [--prior PRIOR | —-p0O PO]
[-—method {OP,PELT}] [-r REGIONS] [-o OUTPUT]
[~k LIBRARYFACTOR] [-1 LENGTHFACTOR]

8.1 Named Arguments

-i, --input Input file

--prior Explicit prior on the number of blocks (not recommended for general use)

--p0 Empirical prior based on a specified false-positive rate; must be between 0 and 1
(default: 0.05)

--method Possible choices: OP, PELT

Segment using the optimal partitioning (OP) or pruned exact linear time (PELT)
algorithm (default: “PELT”)

-1, --regions Regions over which to normalize event counts; should be supplied as a BED file.
If not provided, the input file will be segmented using Bayesian blocks.

-0, --output Output file (bedGraph format); default: stdout
-k, --libraryFactor Normalization factor for library size (default: 1000000)

-1, --lengthFactor Normalization factor for the length of regions; used to calculate scaled rates of
events per interval (default: None)

17

blockify, Release 0.2.2

18 Chapter 8. Command: normalize

CHAPTER
NINE

COMMAND: DOWNSAMPLE

Downsample a qBED file in proportion to the value column

usage: blockify downsample [-h] —-i INPUT -n NUMBER [-s SEED] [-—naive]
[-o OUTPUT]

9.1 Named Arguments

-i, --input Input file

-n, --number Number of entries to downsample to (cannot exceed length of input file)
-s, --seed Random seed

--naive Sample every row with equal likelihood

-0, --output Output file (BED/qBED format); default: stdout

19

blockify, Release 0.2.2

20 Chapter 9. Command: downsample

CHAPTER
TEN

API: SEGMENTATION

class blockify.segmentation.SegmentationRecord
A class to store a single Bayesian block genomic segmentation.

finalize ()
Store post hoc summary statistics of the segmentation.

blockify.segmentation.blocksToDF (chrom, ranges)
Convert a set of contiguous Bayesian blocks to pandas DataFrame format.

Parameters

* chrom (str)— String specifying the chromsome

* ranges (array)— Array whose entries specify the coordinates of block boundaries
Returns output
Return type pandas DataFrame

blockify.segmentation.segment (input_file, method, pO=None, prior=None)
Core segmentation method.

Parameters

* input_file (BedTool object)— BedTool object (instantiated from pybedtools) for
input data

* method (str) - String specifying whether to use OP or PELT for the segmentation

* p0 (float, optional) — Float used to parameterize the prior on the total number of
blocks; must be in the interval [0, 1]. Default: 0.05

e prior (float, optional)— Explicit value for the total number of priors (specifying
this is not recommended)

Returns segmentation — A SegmentationRecord from segmenting the provided data
Return type SegmentationRecord

blockify.segmentation.segment_from_ command line (args)
Wrapper function for the command line function blockify segment

Parameters args (argparse.Namespace object) — Input from command line
Returns segmentation — A SegmentationRecord from segmenting the command line data
Return type SegmentationRecord

blockify.segmentation.validateSegmentationArguments (input_file, p0, prior)
Validates parameters passed via the command line.

21

blockify, Release 0.2.2

Parameters

* input_file (BedTool object)— BedTool object (instantiated from pybedtools) for
input data

* p0 (float)-
e prior (float)—
Returns None

Return type None

22 Chapter 10. API: segmentation

CHAPTER
ELEVEN

API: ANNOTATION (PEAK CALLING)

blockify.annotation.annotate (input_file, regions_bed, background_file, measure='enrichment', in-

termediate=None, alpha=None, correction=None, p_value=None,
distance=None, min_size=None, max_size=None, pseudocount=1,
tight=False, summit=False)

Core annotation and peak calling method.

Parameters

Returns

input_file (BedTool object)— BedTool object (instantiated from pybedtools) for
input data

regions_bed (BedTool object)-BedTool object (instantiated from pybedtools) for
regions over which we are annotation/calling peaks

background_file (BedTool object) — BedTool object (instantiated from pybed-
tools) used to parameterize the background model

measure (str) — Either “enrichment” or “depletion” to indicate which direction of effect
to test for

intermediate (bool)— Whether or not to return intermediate calculations during peak
calling

alpha (float or None) — Multiple-hypothesis adjusted threshold for calling signifi-
cance

correction (str or None) — Multiple hypothesis correction to perform (see
statsmodels.stats.multitest for valid values)

p_value (float or None) — Straight p-value cutoff (unadjusted) for calling signifi-
cance

distance (int or None)- Merge significant features within specified distance cutoff
min_size (int or None)-— Minimum size cutoff for peaks

max_size (int or None)-— Maximum size cutoff for peaks

pseudocount (float)— Pseudocount added to adjust background model

tight (bool)— Whether to tighten the regions in regions_bed

summit (bool)— Whether to return peak summits instead of full peaks

out_bed (BedTool object) — Set of peaks in BED6 format

df (pandas DataFrame or None) — If intermediate specified, DataFrame containing
intermediate calculations during peak calling

23

blockify, Release 0.2.2

blockify.annotation.annotate_from command_line (args)
Wrapper function for the command line function blockify call

Parameters args (argparse.Namespace object) — Input from command line
Returns
* out_bed (BedTool object) — Set of peaks in BED6 format

o df (pandas DataFrame or None) — If intermediate specified, DataFrame containing
intermediate calculations during peak calling

blockify.annotation.getPeakSummits (df, metric="pValue')
From a list of peaks, get a set of peak summits

Parameters

* df (pandas DataFrame) — Set of peaks from annotate as a DataFrame

* metric (str)— Metric to use when filtering for summits. One of “pValue” or “density”
Returns summits — Set of peak summits as a DataFrame
Return type pandas DataFrame

blockify.annotation.parcelConsecutiveBlocks (df)
Concatenates consecutive blocks into a DataFrame. If there are multiple non-contiguous sets of consecutive

blocks, creates one DataFrame per set.
Parameters df (pandas DataFrame) — Input set of blocks as a DataFrame
Returns outlist — List of DataFrames, each of which is a set of consecutive blocks
Return type list of pandas DataFrames

blockify.annotation.sizeFilter (bed, min_size, max_size)
Filter peaks by size.

Parameters

* bed (BedTool object) - Input data file

* min_size (int)— Lower bound for peak size

* max_size (int) - Upper bound for peak size
Returns filtered_peaks — Peaks after size selection
Return type BedTool object

blockify.annotation.tighten (data)
Tightens block boundaries in a BedTool file. This function modifies block boundaries so that they coincide with

data points.

Parameters data (BedTool object)— Input file of block boundaries
Returns refined — BedTool of tightened blocks

Return type BedTool object
blockify.annotation.validateAnnotationArguments (input_file, regions_bed, back-
ground_file, measure, alpha, cor-
rection, p_value, distance, min_size,
max_size, pseudocount)
Validates parameters passed via the command line.

Parameters

24 Chapter 11. API: annotation (peak calling)

blockify, Release 0.2.2

input_file (BedTool object)— BedTool object (instantiated from pybedtools) for
input data

regions_bed (BedTool object)-BedTool object (instantiated from pybedtools) for
regions over which we are annotation/calling peaks

background_file (BedTool object) — BedTool object (instantiated from pybed-
tools) used to parameterize the background model

measure (str) — Either “enrichment” or “depletion” to indicate which direction of effect
to test for

alpha (float or None) — Multiple-hypothesis adjusted threshold for calling signifi-
cance

correction (str or None) — Multiple hypothesis correction to perform (see
statsmodels.stats.multitest for valid values)

p_value (float or None) — Straight p-value cutoff (unadjusted) for calling signifi-
cance

distance (int or None)- Merge significant features within specified distance cutoff
min_size (int or None)— Minimum size cutoff for peaks
max_size (int or None)- Maximum size cutoff for peaks

pseudocount (float) — Pseudocount added to adjust background model

Returns None

Return type None

25

blockify, Release 0.2.2

26 Chapter 11. API: annotation (peak calling)

CHAPTER
TWELVE

API: NORMALIZATION

blockify.normalization.normalize (input file, regions_bed, libraryFactor, lengthFactor)
Core normalization method

Parameters

* input_file (BedTool object)— BedTool object (instantiated from pybedtools) for
input data

* regions_bed (BedTool object)- BedTool object (instantiated from pybedtools) for
regions over which we are normalizing input_file

* libraryFactor (f1loat) — Scalar to normalize by input_file’s library size.

* lengthFactor (float or None) — Scalar to normalize by each block’s length. If
None, no length normalization is performed.

Returns bedgraph — A BedTool object in bedGraph format, using the intervals supplied in re-
gions_bed

Return type BedTool

blockify.normalization.normalize_from_command_line (args)
Wrapper function for the command line function blockify normalize

Parameters args (argparse.Namespace object) — Input from command line
Returns bedgraph — Normalized command line data in bedGraph format
Return type BedTool

blockify.normalization.validateNormalizationArguments (input_file, regions_bed, li-
braryFactor, lengthFactor)
Validates parameters passed via the command line.

Parameters

* input_file (BedTool object)— BedTool object (instantiated from pybedtools) for
input data

* regions_bed (BedTool object)-BedTool object (instantiated from pybedtools) for
regions over which we are normalizing input_file

* libraryFactor (float) — Scalar to normalize by input_file’s library size.

* lengthFactor (float or None) — Scalar to normalize by each block’s length. If
None, no length normalization is performed.

Returns None

Return type None

27

blockify, Release 0.2.2

28 Chapter 12. API: normalization

CHAPTER
THIRTEEN

API: DOWNSAMPLING

blockify.downsampling.downsample (input_file, n, seed=None, naive=False)
Core downsampling method

Parameters

* input_file (pandas DataFrame) — Input data (e.g. BED, gBED, CCF) as a pandas
DataFrame

* n (int)— Number of entries to sample
* seed (int) — Seed for random number generator

* naive (bool) — Choose whether to sample each entry with equal probability (True) or
weighted by the value in the fourth column (if supplied)

Returns downsampled_file — Input file after downsampling
Return type BedTool object

blockify.downsampling.downsample_from command_ line (args)
Wrapper function for the command line function blockify downsample

Parameters args (argparse.Namespace object) — Input from command line
Returns downsampled_file — Downsampled command line data

Return type BedTool

29

blockify, Release 0.2.2

30 Chapter 13. API: downsampling

CHAPTER
FOURTEEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

31

blockify, Release 0.2.2

32 Chapter 14. Indices and tables

[CMC+20]

[KFE12]

[LSM20]

[MLH+20]

BIBLIOGRAPHY

Alexander J. Cammack, Arnav Moudgil, Jiayang Chen, Michael J. Vasek, Mark Shabsovich, Kather-
ine McCullough, Allen Yen, Tomas Lagunas, Susan E. Maloney, June He, Xuhua Chen, Misha Hooda,
Michael N. Wilkinson, Timothy M. Miller, Robi D. Mitra, and Joseph D. Dougherty. A viral toolkit
for recording transcription factor—-DNA interactions in live mouse tissues. Proceedings of the National
Academy of Sciences, pages 201918241, April 2020. URL: http://www.pnas.org/lookup/doi/10.1073/pnas.
1918241117, doi:10.1073/pnas.1918241117.

R Killick, P Fearnhead, and I A Eckley. Optimal Detection of Changepoints With a Linear Computational
Cost. Journal of the American Statistical Association, 107(500):1590-1598, October 2012. URL: https:
/Iwww.tandfonline.com/doi/full/10.1080/01621459.2012.737745, doi:10.1080/01621459.2012.737745.

Jiayue Liu, Christian A Shively, and Robi D Mitra. Quantitative analysis of transcription factor binding
and expression using calling cards reporter arrays. Nucleic Acids Research, 48(9):e50-e50, May 2020.
URL: https://academic.oup.com/nar/article/48/9/e50/5781211, doi:10.1093/nar/gkaal41.

Arnav Moudgil, Daofeng Li, Silas Hsu, Deepak Purushotham, Ting Wang, and Robi David Mitra. The
gBED track: a novel genome browser visualization for point processes. preprint, bioRxiv, April 2020.
URL: http://biorxiv.org/lookup/doi/10.1101/2020.04.27.060061, doi:10.1101/2020.04.27.060061.

[MWC+20] Arnav Moudgil, Michael N. Wilkinson, Xuhua Chen, June He, Alexander J. Cammack, Michael J.

[SNIC13]

[SLC+19]

Vasek, Tomds Lagunas, Zongtai Qi, Matthew A. Lalli, Chuner Guo, Samantha A. Morris, Joseph D.
Dougherty, and Robi D. Mitra. Self-Reporting Transposons Enable Simultaneous Readout of Gene
Expression and Transcription Factor Binding in Single Cells. Cell, pages S009286742030814X,
July 2020. shortDOI:d4wx. URL: https:/linkinghub.elsevier.com/retrieve/pii/S009286742030814X,
doi:10.1016/j.cell.2020.06.037.

Jeffrey D Scargle, Jay P Norris, Brad Jackson, and James Chiang. STUDIES IN ASTRONOMI-
CAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS. The Astrophysical
Journal, 764(2):167, February 2013. URL: http://stacks.iop.org/0004-637X/764/i=2/a=167 Tkey=crossref.
0539dc6f3729¢250567031865ebbe9a, doi: 10.1088/0004-637X/764/2/167.

Christian A. Shively, Jiayue Liu, Xuhua Chen, Kaiser Loell, and Robi D. Mitra. Homotypic coopera-
tivity and collective binding are determinants of bHLH specificity and function. Proceedings of the Na-
tional Academy of Sciences, 116(32):16143-16152, August 2019. URL: http://www.pnas.org/lookup/doi/
10.1073/pnas.1818015116, doi:10.1073/pnas.1818015116.

33

http://www.pnas.org/lookup/doi/10.1073/pnas.1918241117
http://www.pnas.org/lookup/doi/10.1073/pnas.1918241117
https://doi.org/10.1073/pnas.1918241117
https://www.tandfonline.com/doi/full/10.1080/01621459.2012.737745
https://www.tandfonline.com/doi/full/10.1080/01621459.2012.737745
https://doi.org/10.1080/01621459.2012.737745
https://academic.oup.com/nar/article/48/9/e50/5781211
https://doi.org/10.1093/nar/gkaa141
http://biorxiv.org/lookup/doi/10.1101/2020.04.27.060061
https://doi.org/10.1101/2020.04.27.060061
https://linkinghub.elsevier.com/retrieve/pii/S009286742030814X
https://doi.org/10.1016/j.cell.2020.06.037
http://stacks.iop.org/0004-637X/764/i=2/a=167?key=crossref.0539dc6f37f29e250567031865ebbe9a
http://stacks.iop.org/0004-637X/764/i=2/a=167?key=crossref.0539dc6f37f29e250567031865ebbe9a
https://doi.org/10.1088/0004-637X/764/2/167
http://www.pnas.org/lookup/doi/10.1073/pnas.1818015116
http://www.pnas.org/lookup/doi/10.1073/pnas.1818015116
https://doi.org/10.1073/pnas.1818015116

blockify, Release 0.2.2

34 Bibliography

b

blockify.
blockify.
blockify.
blockify.

annotation, 23
downsampling, 29
normalization, 27
segmentation, 21

PYTHON MODULE INDEX

35

blockify, Release 0.2.2

36 Python Module Index

A

annotate () (in module blockify.annotation), 23
annotate_from_command_line () (in module
blockify.annotation), 23

B

blockify.annotation
module, 23
blockify.downsampling
module, 29
blockify.normalization
module, 27
blockify.segmentation
module, 21
blocksToDF () (in module blockify.segmentation), 21

D

downsample () (in module blockify.downsampling), 29
downsample_from_command_line () (in module
blockify.downsampling), 29

F

finalize () (blockify.segmentation.SegmentationRecord

method), 21

G

getPeakSummits () (in module blockify.annotation),
24

M

module
blockify.annotation, 23
blockify.downsampling, 29
blockify.normalization, 27
blockify.segmentation, 21

N

normalize () (in module blockify.normalization), 27
normalize_from command_line () (in module
blockify.normalization), 27

INDEX

F)

parcelConsecutiveBlocks () (in module block-
ify.annotation), 24

S

segment () (in module blockify.segmentation), 21

segment_from_command_line () (in module
blockify.segmentation), 21
SegmentationRecord (class in block-

ify.segmentation), 21
sizeFilter () (in module blockify.annotation), 24

T

tighten () (in module blockify.annotation), 24

V

validateAnnotationArguments ()
blockify.annotation), 24

validateNormalizationArguments () (in mod-
ule blockify.normalization), 27

validateSegmentationArguments ()
ule blockify.segmentation), 21

(in module

(in mod-

37

	Introduction
	Installation
	Tutorial
	Tips and Tricks
	blockify
	Command: segment
	Command: call
	Command: normalize
	Command: downsample
	API: segmentation
	API: annotation (peak calling)
	API: normalization
	API: downsampling
	Indices and tables
	Bibliography
	Python Module Index
	Index

